The Monad of Probability Measures over Compact Ordered Spaces and its Eilenberg-Moore Algebras

نویسنده

  • Klaus Keimel
چکیده

The probability measures on compact Hausdorff spaces K form a compact convex subset PK of the space of measures with the vague topology. Every continuous map f : K → L of compact Hausdorff spaces induces a continuous affine map Pf : PK → PL extending P. Together with the canonical embedding ε : K → PK associating to every point its Dirac measure and the barycentric map β associating to every probability measure on PK its barycenter, we obtain a monad (P, ε, β). The Eilenberg-Moore algebras of this monad have been characterised to be the compact convex sets embeddable in locally convex topological vector spaces by Swirszcz [31]. We generalise this result to compact ordered spaces in the sense of Nachbin [23]. The probability measures form again a compact ordered space when endowed with the stochastic order. The maps ε and β are shown to preserve the stochastic orders. Thus, we obtain a monad over the category of compact ordered spaces and order preserving continuous maps. The algebras of this monad are shown to be the compact convex ordered sets embeddable in locally convex ordered topological vector spaces. This result can be seen as a step towards the characterisation of the algebras of the monad of probability measures on the category of stably compact spaces (see [12, Section VI-6]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing the Eilenberg-Moore Algebras for a Monad of Stochastic Relations

We investigate the category of Eilenberg-Moore algebras for the Giry monad associated with stochastic relations over Polish spaces with continuous maps as morphisms. The algebras are characterized through convex partitions of the space of all probability measures. Examples are investigated, and it is shown that finite spaces usually do not have algebras at all.

متن کامل

Applications of the Kleisli and Eilenberg-Moore 2-adjunctions

In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...

متن کامل

Derandomizing probabilistic semantics through Eilenberg-Moore algebras for the Giry monad

A simple language is defined, a probabilistic semantics and a partial correctness logic is proposed in terms of probabilistic relations. It is shown how a derandomized semantics can be constructed through the Eilenberg-Moore algebras. We investigate the category of EilenbergMoore algebras for the Giry monad associated with stochastic relations over Polish spaces with continuous maps as morphism...

متن کامل

Abstract ordered compact convex sets and the algebras of the (sub-)probabilistic power domain monad over ordered compact spaces

ordered compact convex sets and the algebras of the (sub-)probabilistic power domain monad over ordered compact spaces Klaus Keimel∗

متن کامل

ON THE CAPACITY OF EILENBERG-MACLANE AND MOORE SPACES

K. Borsuk in 1979, at the Topological Conference in Moscow, introduced concept of the capacity of a compactum and asked some questions concerning properties of the capacity ofcompacta. In this paper, we give partial positive answers to three of these questions in some cases. In fact, by describing spaces homotopy dominated by Moore and Eilenberg-MacLane spaces, the capacities of a Moore space $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008